A novel class of optical breathers,called elegant Ince-Gaussian breathers,are presented in this paper.They are exact analytical solutions to Snyder and Mitchell’s mode in an elliptic coordinate system,and their transverse structures are described by Ince-polynomials with complex arguments and a Gaussian function.We provide convincing evidence for the correctness of the solutions and the existence of the breathers via comparing the analytical solutions with numerical simulation of the nonlocal nonlinear Schro¨dinger equation.
A novel class of optical breathers, called elegant Ince-Gaussian breathers, are presented in this paper. They are exact analytical solutions to Snyder and Mitchell's mode in an elliptic coordinate system, and their transverse structures are described by Ince-polynomials with complex arguments and a Gaussian function. We provide convincing evidence for the correctness of the solutions and the existence of the breathers via comparing the analytical solutions with numerical simulation of the nonlocal nonlinear SchrSdinger equation.