位置:成果数据库 > 期刊 > 期刊详情页
改进的带有局部搜索算子的量子粒子群算法
  • ISSN号:1000-7024
  • 期刊名称:《计算机工程与设计》
  • 时间:0
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]空军工程大学理学院,陕西西安710051
  • 相关基金:国家自然科学基金项目(60573040)
中文摘要:

带有局部搜索算子的量子粒子群算法(MQPSO-LQPSO)是一种较成功的改进的QPSO算法,但是该算法在搜索震荡的不足,在一定程度上降低了搜索效率。针对该问题,提出了一种改进方法,将LQPSO搜索得到的最优粒子替换MQPSO的Gbest和当前群中适应度最佳的粒子和最差的粒子。在标准测试函数上的仿真实验结果表明,改进的算法在不改变原有算法框架和不引入新的参数条件下,提高了MQPSO-LQPSO的搜索能力和计算效率。

英文摘要:

Quantum-behaved particle swarm optimization with generalized local search operator (shortly,MQPSO-LQPSO) is a very successful algorithm of modified QPSO proposed. However,problem such as concussive search lowered its searching efficiency. Correspondingly,an improved MQPS-LQPSO is proposed. The best particle of LQPSO is sent to the best particle and the worst particle in the swarm as well as the Gbest of the current MQPSO. The test on benchmark functions show that the improved algorithm improves the searching ability and raises computational efficiency without changing the basic frame of MQPSO-LQPSO or adopting any new parameters.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与设计》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团
  • 主办单位:中国航天科工集团二院706所
  • 主编:汤铭瑞
  • 地址:北京142信箱37分箱
  • 邮编:100854
  • 邮箱:ced@china-ced.com
  • 电话:010-68389884
  • 国际标准刊号:ISSN:1000-7024
  • 国内统一刊号:ISSN:11-1775/TP
  • 邮发代号:82-425
  • 获奖情况:
  • 中国科学引文数据库来源期刊,中国学术期刊综合评价数据库来源期刊,中国科技论文统计与分析用期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:45616