位置:成果数据库 > 期刊 > 期刊详情页
一种基于SUKF的广义行为环境建模及在远程AUV推进系统的应用研究
  • ISSN号:0577-6686
  • 期刊名称:《机械工程学报》
  • 时间:0
  • 分类:TP24[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]中国科学院沈阳自动化研究所机器人学国家重点实验室,沈阳110016, [2]中国科学院研究生院,北京100049
  • 相关基金:国家重点基础研究发展计划(973计划 6318101007-3 6318102008-4); 国家自然科学基金(60805050); 中国科学院知识创新工程(YYYJ-0917)资助项目
中文摘要:

针对自主水下机器人对广义行为环境自适应能力差的问题,给出基于平方根无色卡尔曼滤波的广义行为环境建模方法。在广义行为环境的离线参考模型中,有一些参数是时变的、是无法事先预知的,必须通过传感器探测的信息进行实时估计和预测。采用平方根无色卡尔曼滤波算法,根据在线传感器信息以及离线参考模型,实时地估计出广义行为环境的状态和参数。主要研究自主水下机器人自身行为环境建模,以远程水下自主机器人的推进系统为例,构建一种推进器效率损失因子的故障模型结构,应用平方根无色卡尔曼滤波对水下自主机器人的状态和推进器故障参数进行在线联合估计。利用远程自主水下机器人的数学模型进行仿真验证,试验结果表明了算法的有效性,并对影响平方根无色卡尔曼滤波算法估计性能的因素进行了分析。

英文摘要:

Due to the poor adaptive capacity of long-range autonomous underwater vehicles(AUV) for general behavior of the environment,a square-root unscented kalman filter(SUKF) based modeling is proposed.In the offline model of general behavior of the environment,some parameters are time-varying,or not possible to be predicted,these parameters must be estimated and predicted through the information detected by the sensors.According to the sensor's information online and model offline,SUKF is used to estimate the state and parameter about the general behavior of the environment in real time.Modeling for behavior environment of AUV is the main work,taking propulsion system as an example,a model structure of fault used actuator effectiveness factors(AEFs) is constructed,then the SUKF is used for on-line joint estimation of both the states and AEFs parameters of AUV.Simulators are conducted by using the model of long-range AUV,and the results show the validity of the algorithm.Finally,the factors that affect the performance for estimation of SUKF are analyzed.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《机械工程学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国机械工程学会
  • 主编:宋天虎
  • 地址:北京百万庄大街22号
  • 邮编:100037
  • 邮箱:bianbo@cjmenet.com
  • 电话:010-88379907
  • 国际标准刊号:ISSN:0577-6686
  • 国内统一刊号:ISSN:11-2187/TH
  • 邮发代号:2-362
  • 获奖情况:
  • 中国期刊奖,“中国期刊方阵”双高期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:58603