位置:成果数据库 > 期刊 > 期刊详情页
面向中文短影评的分类技术研究
  • ISSN号:1671-9352
  • 期刊名称:《山东大学学报:理学版》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:北京工商大学计算机与信息工程学院,北京100048
  • 相关基金:国家自然科学基金资助项目(61170112)
中文摘要:

针对电影影评语句短小、特征矩阵稀疏问题,提出一种利用本体扩展特征矩阵的方法。首先通过传统与新型文本分类方法的比较和分析,发现适合中文短影评的分类方法,并通过试验证明决策树的短文本分类效果优于SVM、Bayes和KNN等文本分类方法,然后进一步利用决策树分类本体扩展后的特征向量。试验表明,基于本体扩展的中文短影评的分类效果比传统的分类效果提高3%,查准率达到90.1%。

英文摘要:

Aiming at the problems of film reviews that the sentences are short and characteristics matrix is sparse,a method using ontology to expand the matrix was proposed. Through comparison and analysis of traditional and developmental text classification methods,a suitable way for Chinese short film reviews classification was found. The experiment results proved that the decision tree is better than the SVM,Bayes and KNN in this essay,and the decision tree classifier was further used to classify the feature vectors of the ontology expanding. The results of experiment showed that the effect of Chinese short film reviews classification based on the ontology expanding was 3% higher than the traditional methods,and the classification accuracy reached 90. 1%.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《山东大学学报:理学版》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:山东大学
  • 主编:刘建亚
  • 地址:济南市经十路17923号
  • 邮编:250061
  • 邮箱:xblxb@sdu.edu.cn
  • 电话:0531-88396917
  • 国际标准刊号:ISSN:1671-9352
  • 国内统一刊号:ISSN:37-1389/N
  • 邮发代号:24-222
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘
  • 被引量:6243