研究了一类稀疏效应下带其次Neumann边界条件的捕食-食饵模型。首先利用算子谱理论及Turing理论得到了正常数平衡解(u^-,υ^-)的Turing不稳定性及其一致渐近稳定性。其次利用扰动理论和分歧理论,以扩散系数d为分歧参数,证明了一定条件下系统在正常数平衡解(u^-,υ^-)附近存在局部分歧,给出了分歧点附近解的结构,并且局部分歧可以延拓成全局分歧。
A predator-prey model with sparse effect subject to the Neumann boundary condition is investigated.Firstly,Turing instability and global stability of positive constant steady-state solution are obtained by operator spectrum theory and Turing theory.Secondly,using diffusion coefficient as bifurcation parameter,the bifurcation at positive constant steady-state solution is obtained by perturbation theory and bifurcation theory.Moreover,the structure of the solution near bifurcation points is given and the local branch can be extended to a global branch.