位置:成果数据库 > 期刊 > 期刊详情页
支持增量式更新的大数据特征学习模型
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]大连理工大学软件学院,辽宁大连116620, [2]内蒙古财经大学职业学院,呼和浩特010010
  • 相关基金:国家自然科学基金重点项目(No.U1301253); 辽宁省自然科学基金(No.201202032)
中文摘要:

大数据具有高速变化特性,其内容与分布特征均处于动态变化之中,目前的前馈神经网络模型是一种静态学习模型,不支持增量式更新,难以实时学习动态变化的大数据特征。针对这个问题,提出一种支持增量式更新的大数据特征学习模型。通过设计一个优化目标函数对参数进行快速增量式更新,为了在更新过程中保持网络的原始知识,最小化平方误差函数。对于特征变化频繁的数据,通过增加隐藏层神经元数目网络对结构进行更新,使得更新后的网络能够实时学习动态变化大数据的特征。在对网络参数与结构更新之后,通过权重矩阵SVD分解对更新后的网络结构进行优化,删除冗余的网络连接,增强网络模型的泛化能力。实验结果表明提出的模型能够在尽可能保持网络模型原始知识的基础上,通过不断更新神经网络的参数与结构实时学习动态大数据的特征。

英文摘要:

Data are generating at extremely high speed in the era of big data, whose contents and features are in the dynamic changes. Thus, the learning algorithm for neural networks should not only be able to adapt new instances, but also preserve the prior knowledge. However, the feed-forward neural network trained by typically Back-Propagation(BP)algorithm is not incremental in nature. This paper proposes an incremental back-propagation model for training neural networks. The goal of incremental leaning is achieved by adjusting the parameters and structures of the feed-forward neural network. The parameters are incrementally adapted by optimizing an objective function. The network topology is adapted by increas-ing the number of hidden neurons only if the parameters adaption perturbs the prior knowledge severely. After updating the model, the Singular Value Decomposition(SVD)of the weight matrix is performed to remove the redundant connec-tions of each newly added hidden unit. Experimental results demonstrate that the proposed model can adjust its parame-ters and structure depending on the requirement of the big data process in real time with preserving the prior knowledge as much as possible in evolving environments.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887