为了克服传统多模算法收敛速度慢的缺点,提出了引入动态动量因子的共轭梯度多模盲均衡算法。该算法将共轭梯度方法及动量项引入多模算法中,得到了引入动量项的共轭梯度多模盲均衡算法的迭代公式。在研究动量因子变化规律的基础上,进一步引入指数函数的变形形式,构造了动量因子与误差之间的非线性函数关系。利用误差的递减规律实现动量因子的自适应减小,从而达到加快收敛速度,降低稳态误差的目的。理论分析和仿真结果均表明:提出的新算法与传统多模算法及共轭梯度多模算法相比较,能够有效地提高收敛速度,并且降低了稳态均方误差。