基于Helmholtz自由能建立了聚乙烯的完全物态方程,通过该模型计算获得了聚乙烯的150GPa压力范围内的冲击Hugoniot关系、冲击波温度.压力关系,计算结果与已有实验结果和分子动力学计算结果均符合较好,表明构建的物态方程对描述聚乙烯离解相变压力150GPa内的热力学量具有很好的适用性.
Polyethylene (PE) is an important kind of plastic, which plays a significant role as the shell material of the fuel capsule, light weight structural element subjected to intense mechanical impact and explosion load. And it is well accepted that semi-empirical three-term equation of state (EOS) is one of the most widely used EOSs in practical work. Therefore, studies of semi-empirical three-term EOS of PE are significant for accurately predicting and analyzing the physical processes and experimental results under high pressure compression. A semi-empirical three-term complete EOS of PE based on the model of Helmholtz free energy is established in this work. According to the EOS model, the Helmholtz free energy is composed of cold energy, thermal contribution of atoms and thermal excitation of electrons. The cold energy is calculated by using the Mie potential. The optical frequency branch of atomic vibration and the thermal contribution of electrons are neglected in the calculation at temperatures below 104 K. The parameters of Helmholtz free energy are calculated by using the shock Hugoniot data and thermal parameters at ambient state. And then, the application pressure range and reliability of the semi-empirical three-term EOS of PE are evaluated. Shock Hugoniot, shock wave temperature and Grfineisen coefficient of PE are deduced from the EOS. The results show that shock Hugoniot and shock wave temperature are consistent well with the experimental data and the first-principle calculation in a pressure range of 150 GPa. Because the specific volume of PE does not change obviously in the melting and chain dissociation process, the assumption of linear Hugoniot relation of PE is valid for calculating the cold energy parameters. The calculation results deviate from the experimental results at about 150 GPa while the compression lasts up to the chemical bond dissociation pressure of PE. In addition, the value of buck modulus and its derivative with respect to pressure at zero pressure and temperature depend st