AMSU 的影响 -- A 和 IASI (红外线的大气的发出声音干涉仪) 台风 Vicente 和 Saola (2012 ) 的预言上的发光吸收被使用整体变换 Kalman filter/three-dimensional 学习变化(ETKF/3DVAR ) 为天气研究的混合系统并且预报(WRF ) 当模特儿。没有在 3DVAR 吸收发光数据的实验与用 3DVAR 和 ETKF/3DVAR 混合系统的二个实验相比吸收 AMSU -- 发光分别地。结果显示出那 AMSU -- 一个发光数据在 3DVAR 系统的磁道预报上有细微积极影响。当 ETKF/3DVAR 混合系统被采用时,台风轨道预报技巧极大地被改进。为 36-h 预报,混合系统至多为风和温度有一个更低的 root-mean-square 错误在底层的层次,和特定的湿度,与 3DVAR 相比。平均,它也被发现那与 AMSU 一起的 IASI 发光数据的使用 -- 没有 IASI,在混合系统的一个发光数据进一步与实验相比增加磁道,风,和特定的湿度预报精确性发光吸收。
The impacts of AMSU-A and IASI(Infrared Atmospheric Sounding Interferometer) radiances assimilation on the prediction of typhoons Vicente and Saola(2012) are studied by using the ensemble transform Kalman filter/three-dimensional variational(ETKF/3DVAR) Hybrid system for the Weather Research and Forecasting(WRF) model. The experiment without assimilating radiance data in 3DVAR is compared with two experiments using the 3DVAR and ETKF/3DVAR hybrid systems to assimilate AMSU-A radiance,respectively. The results show that AMSU-A radiance data have slight positive impacts on track forecasts of the 3DVAR system. When the ETKF/3DVAR hybrid system is employed, typhoon track forecast skills are greatly improved. For 36-h forecasts, the hybrid system has a lower root-mean-square error for wind and temperature at most levels, and specific humidity at low levels, compared to 3DVAR. It is also found that, on average, the use of the IASI radiance data along with AMSU-A radiance data in the hybrid system further increases the track, wind, and specific humidity forecast accuracy compared to the experiment without IASI radiance assimilation.