位置:成果数据库 > 期刊 > 期刊详情页
面向文本分类的混淆类判别技术
  • 期刊名称:软件学报,2008年已录用,待发表
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]东北大学信息科学与工程学院,辽宁沈阳110004
  • 相关基金:Supported by the National Natural Science Foundation of China under Grant No,60473140 (国家985212程项目); the National 985 Project of China under Grant No.985-2-DB-C03(国家985212程项目); the Program for New Century Excellent Talents in University of China under Grant No.NCET-05-0287(新世纪优秀人才计划); the National High-Tech Research and Development Plan of China under Grant No,2006AA01Z 154 (国家高技术研究发展计划(863)) 致谢 在本文的研究工作中,感谢Prof.Kch-Yih Su关于基于判别能力的特征选取技术的有价值的讨论,同时感谢实验室的陈晴、王振兴和王安慧同学对混淆类识别算法优化的一些建议.
  • 相关项目:基于内容分析的话题检测和追踪关键技术研究
中文摘要:

分析了文本分类过程中存在的混淆类现象,主要研究混淆类的判别技术,进而改善文本分类的性能.首先,提出了一种基于分类错误分布的混淆类识别技术,识别预定义类别中的混淆类集合.为了有效判别混淆类,提出了一种基于判别能力的特征选取技术,通过评价某一特征对类别之间的判别能力实现特征选取.最后,通过基于两阶段的分类器设计框架,将初始分类器和混淆类分类器进行集成,组合了两个阶段的分类结果作为最后输出.混淆类分类器的激活条件是:当测试文本被初始分类器标注为混淆类类别时,即采用混淆类分类器进行重新判别在比较实验中采用了Newsgroup和863中文评测语料,针对单标签、多类分类器.实验结果显示,该技术有效地改善了分类性能.

英文摘要:

This paper analyzes confusion class phenomena existing in text classification procedure, and studies further confusion class discrimination techniques to improve the performance of text classification. In this paper, firstly a technique for confusion class recognition based on classification error distribution is proposed to recognize confusion class sets existing in the pre-defined taxonomy. To effectively discriminate confusion classes, this paper proposes an approach to feature selection based on discrimination capability in the procedure of which each candidate feature's discrimination capability for class pair is evaluated. At last, two-stage classifiers are used to integrate baseline classifier and confusion class classifiers, and in which the two output results from two stages are combined into the final output results. The confusion class classifiers in the second stage could be activated only when the output class of the input text assigned by baseline classifier in the first stage belongs to confusion classes, then the confusion class classifiers are used to discriminate the testing text again. In the comparison experiments, Newsgroup and 863 Chinese evaluation data collection are used to evaluate the effectiveness of the techniques proposed in this paper, respectively. Experimental results show that the methods could improve significantly the performance for single-label and multi-class classifier (SMC).

同期刊论文项目
同项目期刊论文