位置:成果数据库 > 期刊 > 期刊详情页
量子衍生神经网络的设计与实现
  • ISSN号:1003-0530
  • 期刊名称:信号处理
  • 时间:2014.4
  • 页码:374-383
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]东北石油大学学生工作处,大庆市163318, [2]东北石油大学计算机与信息技术学院,大庆市163318
  • 相关基金:国家自然科学基金(61170132)
  • 相关项目:量子过程神经网络模型及算法研究
中文摘要:

当使用神经网络解决问题时,得到的结果与神经网络的逼近能力有很大关系.如何提高神经网络的逼近能力目前还没有较为理想的解决方法.本文提出了一种利用多位量子受控非门来构造神经网络模型的新方法.该模型为三层结构,隐层为量子神经元,输出层为普通神经元.量子神经元由量子旋转门和多位受控非门组成,利用多位受控非门中目标量子位的输出向输入端的反馈,实现对输入序列的整体记忆,利用多位受控非门的受控关系获得量子神经元的输出.基于量子计算原理设计了该模型的L-M学习算法.该模型可从宽度和深度两方面获取输入序列的特征.纸牌预测的实验结果表明,当输入节点数和序列长度比较接近时,该模型对训练集的识别率比普通神经网络有大约8%的提高,从而揭示了量子计算机制对提高网络逼近能力的有效性.

英文摘要:

The approximation ability of neural networks plays an important role to the result when one uses neural networks to resolve problems.Unfortunately there is no ideal way to construct proper networks with strong approximation ability.A novel construction approach based on the multi-qubits controller-not gates is proposed for neural networks model in this paper.The proposed model consists of three layers where the hidden nodes are the quantum neurons and the output nodes are the common neurons.The quantum neuron consists of the quantum rotation gates and the multi-qubits controllednot gates.The overall memory of input sequences is captured from information feedback of target qubit from output to input in the multi-qubits controlled-not gate.The output of quantum neuron is obtained from the controlled relationship of the multi-qubits controlled-not gate.The L-M learning algorithms are designed in detail based on the basic principles of quantum computation.The features of input sequences can be effectively obtained in two ways of breadth and depth.The experimental results of solitaire forecast show that,when the number of input nodes is close to the length of sequences,the training set recognition rate of the proposed model increases about 8% than the common neural networks,which reveals the effectiveness of the quantum computation for enhancing the approximation capability of the common neural networks.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《信号处理》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会
  • 主编:谢维信
  • 地址:北京鼓楼西大街41号
  • 邮编:100009
  • 邮箱:xhclfh@sohu.com
  • 电话:010-64010656
  • 国际标准刊号:ISSN:1003-0530
  • 国内统一刊号:ISSN:11-2406/TN
  • 邮发代号:80-531
  • 获奖情况:
  • 国家一级科技期刊
  • 国内外数据库收录:
  • 美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:10219