位置:成果数据库 > 期刊 > 期刊详情页
Efficient Multi-tenant Virtual machine Allocation in Cloud Data Centers
  • ISSN号:1007-0214
  • 期刊名称:Tsinghua Science and Technology
  • 时间:0
  • 页码:-
  • 分类:TP316[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术] O224[理学—运筹学与控制论;理学—数学]
  • 作者机构:[1]the National Key Laboratory of Parallel and Distributed Processing (PDL), College of Computer, National University of Defense Technology
  • 相关基金:supported in part by the National Key Basic Research and Development (973) Program of China (No. 2011CB302600); the National Natural Science Foundation of China (No. 61222205); the Program for New Century Excellent Talents in University; the Fok Ying-Tong Education Foundation (No. 141066)
  • 相关项目:分布式计算
中文摘要:

Virtual Machine(VM) allocation for multiple tenants is an important and challenging problem to provide efficient infrastructure services in cloud data centers. Tenants run applications on their allocated VMs, and the network distance between a tenant’s VMs may considerably impact the tenant’s Quality of Service(Qo S). In this study, we define and formulate the multi-tenant VM allocation problem in cloud data centers, considering the VM requirements of different tenants, and introducing the allocation goal of minimizing the sum of the VMs’ network diameters of all tenants. Then, we propose a Layered Progressive resource allocation algorithm for multi-tenant cloud data centers based on the Multiple Knapsack Problem(LP-MKP). The LP-MKP algorithm uses a multi-stage layered progressive method for multi-tenant VM allocation and efficiently handles unprocessed tenants at each stage. This reduces resource fragmentation in cloud data centers, decreases the differences in the Qo S among tenants, and improves tenants’ overall Qo S in cloud data centers. We perform experiments to evaluate the LP-MKP algorithm and demonstrate that it can provide significant gains over other allocation algorithms.

英文摘要:

Virtual Machine(VM) allocation for multiple tenants is an important and challenging problem to provide efficient infrastructure services in cloud data centers. Tenants run applications on their allocated VMs, and the network distance between a tenant's VMs may considerably impact the tenant's Quality of Service(Qo S). In this study, we define and formulate the multi-tenant VM allocation problem in cloud data centers, considering the VM requirements of different tenants, and introducing the allocation goal of minimizing the sum of the VMs' network diameters of all tenants. Then, we propose a Layered Progressive resource allocation algorithm for multi-tenant cloud data centers based on the Multiple Knapsack Problem(LP-MKP). The LP-MKP algorithm uses a multi-stage layered progressive method for multi-tenant VM allocation and efficiently handles unprocessed tenants at each stage. This reduces resource fragmentation in cloud data centers, decreases the differences in the Qo S among tenants, and improves tenants' overall Qo S in cloud data centers. We perform experiments to evaluate the LP-MKP algorithm and demonstrate that it can provide significant gains over other allocation algorithms.

同期刊论文项目
期刊论文 10 会议论文 14 著作 1
同项目期刊论文
期刊信息
  • 《清华大学学报:自然科学英文版》
  • 主管单位:教育部
  • 主办单位:清华大学
  • 主编:孙家广
  • 地址:北京市海淀区清华园
  • 邮编:100084
  • 邮箱:journal@tsinghua.edu.cn
  • 电话:010-62788108 62792994
  • 国际标准刊号:ISSN:1007-0214
  • 国内统一刊号:ISSN:11-3745/N
  • 邮发代号:82-627
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘
  • 被引量:323