位置:成果数据库 > 期刊 > 期刊详情页
基于访问量预测的数据中心自适应节能机制
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学技术大学自动化系,合肥230027, [2]国家广播电影电视总局广播科学研究院,北京100866
  • 相关基金:国家自然科学基金资助项目(61074033);教育部博士点基金资助项目(20093402110019)
中文摘要:

为能在保证服务质量的前提下提高数据中心能源利用率,提出一种基于用户访问量预测的数据中心虚拟机自适应节能机制,根据自适应Holt-Winters(AHW)预测法研究互联网用户访问行为的周期性,使其能根据用户访问量自适应地调整虚拟机数量以提高虚拟机的利用率,达到减少数据中心能耗的目的。仿真实验结果显示,AHW预测法最高平均绝对百分误差为22.46%,基于AHW预测法的数据中心虚拟机利用率为97.88%,相比未采用节能机制时提高了37.19%,从而证明该节能机制对周期性用户访问进行预测时具有较好的统计性能和较强的鲁棒性,能更好地满足数据中心节能的需求。

英文摘要:

In order to improve the energy utilization rate in data center on the premise of guaranteeing Quality of Service(QoS), this paper proposes a data center Virtual Machine(VM) adaptive energy-saving mechanism based on the prediction of users' access quantity, and researches periodicity of users' visit by Adaptive Holt-Winters(AHW) prediction method. It can adaptively adjust the number of VM according to user visits to improve the utilization rate of VM and achieve the purpose of reducing data center energy consumption. Simulation experimental results show that the Mean Absolute Percentage Error(MAPE) of AHW method is 22.46% and the utilization rate of VM in data center is 97.88% which is promoted by 37.19% compared with the former utilization without using this adaptive energy-saving mechanism, and proves that this energy-saving mechanism has good statistical properties and stability for forecasting the periodic user access, it can be better satisfy the needs of data center energy-efficient.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139