位置:成果数据库 > 期刊 > 期刊详情页
概率神经网络与差异演化在胶囊内窥图像出血识别中的应用
  • ISSN号:1004-924X
  • 期刊名称:《光学精密工程》
  • 时间:0
  • 分类:R445[医药卫生—影像医学与核医学;医药卫生—诊断学;医药卫生—临床医学] TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]上海交通大学电子信息与电气工程学院,上海200240
  • 相关基金:国家自然科学基金资助项目(No.30570485); 国家863高技术研究发展计划资助项目(No.2006AA04Z368)
中文摘要:

为了解决在大量的胶囊内窥图像中寻找出血或相关病理特征这一难题,提出了一种智能自动识别胶囊内窥图像出血的方法。首先分析了胶囊内窥图像出血的颜色特征分布,然后利用差异演化算法(DE)对概率神经网络(PNN)进行了改进,使每个神经元传递函数具有不同的平滑参数。在此基础上提出了一种胶囊内窥图像出血智能识别的方法,并通过软件编程实现了该方法。实验结果表明,该软件能正确地识别出内窥图像中的出血区域并清晰地标示,用该方法测得的出血检测灵敏度和特异度分别为94%和87%,节省了图像识别时间,基本实现了胶囊内窥图像出血智能识别,可代替临床医生应用于胶囊内窥图像的初步检测。

英文摘要:

An automatic and intelligent computer aided bleeding detection technique is presented to recognize the bleeding regions and other pathological features in large amounts of images generated from a Wireless Capsule Endoscope(WCE).Color features of the bleeding region in WCE images is extracted,and then the Probabilistic Neural Network (PNN) is improved by using differential evolution (DE) algorithm to offer the different smoothing parameters for each transfer function of neurons.Based on the improved PNN,the intelligent recognizing method is proposed and implemented through programming.The experimental results show that the bleeding regions in WCE images can be recognized correctly and marked clearly,and the sensitivity and the specificity of the method are measured as 94% and 87%,respectively.The intelligent bleeding detection method reduces the time-consuming for the WCE video detection and can help the clinician examine the gastrointestinal disease.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光学精密工程》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会
  • 主编:曹健林
  • 地址:长春市东南湖大路3888号
  • 邮编:130033
  • 邮箱:gxjmgc@sina.com;gxjmgc@ciomp.ac.cn
  • 电话:0431-86176855 84613409传
  • 国际标准刊号:ISSN:1004-924X
  • 国内统一刊号:ISSN:22-1198/TH
  • 邮发代号:12-166
  • 获奖情况:
  • 三次获得“百种中国杰出学术期刊”,2006年获得中国科协择优支持基金,2007年获“吉林省新闻出版精品期刊奖”,2008年获“中国精品科技期刊”,2012年《光学精密工程》看在的3篇论文获得中国百...,第三届中国出版政府奖提名奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:22699