在真核细胞的染色体的背景,染色质随机没在房间原子核被散布,但是相反被组织成高顺序的结构。新兴的证据显示这些高顺序的染色质结构在调整象抄写和 DNA 复制那样的染色体功能起重要作用。与在 3C (染色体符合构造俘获) 的前进基于技术, Hi-C 广泛地被用来在细胞的区别和 oncogenesis 期间调查染色体宽的 longrange 染色质相互作用。自从在 2009 的 Hi-C 试金的第一份出版物,大量生物信息的工具为从印射处理 Hi-C 数据被实现了未加工读到使接触矩阵和高解释正常化,也提供一条整个工作流管道或集中于一个特别过程。结果这篇文章考察处理工作流的一般 Hi-C 数据和处理工具的当前流行的 Hi-C 数据。我们在这些工具怎么被用于 Hi-C 结果的完整的解释上加亮。结论 Hi-C 试金是一个强大的工具调查高顺序的染色质结构。为 Hi-C 数据分析的新奇方法的继续的开发将为更好理解染色体组织的规章的函数是必要的。
Background: In eukaryotic genome, chromatin is not randomly distributed in cell nuclei, but instead is organized into higher-order structures. Emerging evidence indicates that these higher-order chromatin structures play important roles in regulating genome functions such as transcription and DNA replication. With the advancement in 3C (chromosome conformation capture) based technologies, Hi-C has been widely used to investigate genome-wide long- range chromatin interactions during cellular differentiation and oncogenesis. Since the first publication of Hi-C assay in 2009, lots of bioinformatic tools have been implemented for processing Hi-C data from mapping raw reads to normalizing contact matrix and high interpretation, either providing a whole workflow pipeline or focusing on a particular process. Results: This article reviews the general Hi-C data processing workflow and the currently popular Hi-C data processing tools. We highlight on how these tools are used for a full interpretation of Hi-C results. Conclusions: Hi-C assay is a powerful tool to investigate the higher-order chromatin structure. Continued development of novel methods for Hi-C data analysis will be necessary for better understanding the regulatory function of genome organization.