位置:成果数据库 > 期刊 > 期刊详情页
Direct AFM measurements of morphology and interaction force at solid-liquid interfaces between DTAC/CTAC and mica
  • ISSN号:1672-7207
  • 期刊名称:《中南大学学报:自然科学版》
  • 时间:0
  • 分类:O441[理学—电磁学;理学—物理] O647.3[理学—物理化学;理学—化学]
  • 作者机构:School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
  • 相关基金:Project(50974134) supported by the National Natural Science Foundation of China
中文摘要:

The adsorption of dedecyltrimethylammoium chloride(DTAC) and hexadecyltrimethylammoium chloride(CTAC) on muscovite mica substrates was examined using atomic force microscopy(AFM). Adsorption morphology images and interaction forces of cationic surfactants at solid-solution interfaces were measured in tapping mode and Pico Force mode, respectively. The images demonstrated that the adsorbed structure was varied by a variety of surfactant concentrations. The adsorbed layer on mica was monolayer at first, and then became bilayer. A striped adsorbed structure was observed in a higher concentration of CTAC,which could not be found in any other concentrations of DTAC. For force measurements, the repulsive force was exponentially decreasing with the concentration increasing till a net attractive force appeared. A largest attractive force could be observed at a certain concentration, which was close to the point of charge neutralization. The results also showed a significant impact of hydrocarbon chain length on adsorption. An adsorption simulation was established to give a clear understanding of the interaction between cationic surfactants and mica.

英文摘要:

The adsorption of dedecyltrimethylammoium chloride (DTAC) and hexadecyltrimethylammoium chloride (CTAC) on muscovite mica substrates was examined using atomic force microscopy (AFM). Adsorption morphology images and interaction forces of cationic surfactants at solid-solution interfaces were measured in tapping mode and PicoForce mode, respectively. The images demonstrated that the adsorbed structure was varied by a variety of surfactant concentrations. The adsorbed layer on mica was monolayer at first, and then became bilayer. A striped adsorbed structure was observed in a higher concentration of CTAC, which could not be found in any other concentrations of DTAC. For force measurements, the repulsive force was exponentially decreasing with the concentration increasing till a net attractive force appeared. A largest attractive force could be observed at a certain concentration, which was close to the point of charge neutralization. The results also showed a significant impact of hydrocarbon chain length on adsorption. An adsorption simulation was established to give a clear understanding of the interaction between cationic surfactants and mica.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中南大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:中南大学
  • 主编:黄伯云
  • 地址:湖南长沙中南大学校本部
  • 邮编:410083
  • 邮箱:zngdxb@csu.edu.cn
  • 电话:0731-88879765
  • 国际标准刊号:ISSN:1672-7207
  • 国内统一刊号:ISSN:43-1426/N
  • 邮发代号:42-19
  • 获奖情况:
  • 首届全国优秀科技期刊评比一等奖,第二届全国优秀科技期刊评比一等奖,首届中国有色金属工业优秀科技期刊评比一等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:20874