从核电厂的放射性核种版本的环境上的影响吸引了增加的注意,特别在在在日本的 Fukushima Daiichi 核电厂的事故以后。在固体 / 液体的接口和沉积的一个表面 micromorphology 模型基于吸附 / 解吸附作用的机制,分发系数 K 的一个理论表达式 < 潜水艇 class= “ a-plus-plus ” > d 被导出。这个系数在海水,推迟的沉积和海床沉积在放射性核种的分发上有重要效果。K < 潜水艇 class= “ a-plus-plus ” > d 然后被用来模仿 < 啜 class= “ a-plus-plus ” > 90 在 Daya 海湾核电厂附近的海的 Sr 运输。模拟结果与潮汐的水平的地大小相比,当前的速度,推迟的沉积集中并且 < 啜 class= “ a-plus-plus ” > 90 在一样的时期的 Sr 集中。总的来说,模仿的结果同意有这块地的井测量了数据。因此,为 K 的导出的表示 < 潜水艇 class= “ a-plus-plus ” > d 能够解释现实主义的吸附 / 解吸附作用过程。而且,结论被画那大约40%<啜class=“ a-plus-plus ”> 90 Daya 海湾核电厂释放的 Sr 将被推迟的沉积吸附并且20%由海床沉积,仅仅大约40%<啜class=“ a-plus-plus ”> 90 Sr 将在华南在 Daya 海湾核电厂附近留在海海。
The impact on the environment ofradionuclide release from nuclear power plants has attracted increased attention, especially after the accident at Fukushima Daiichi Nuclear Power Plant in Japan. Based on the mechanisms of adsorption/desorption at solid/liquid interfaces and a surface micromorphology model of sediments, a theoretical expression of the distribution coefficient Kd is derived. This coefficient has significant effects on the distribution of radionuclide in seawater, suspended sediment and seabed sediment. Kd is then used to simulate ^90Sr transport in the sea near the Daya Bay Nuclear Power Plant. The simulation results are compared with field measurements of tidal level, current velocity, suspended sediment concentration and ^90Sr concentrations in the same period. Overall, the simulated results agree well with the field measured data. Thus, the derived expression for Ka is capable of interpreting realistic adsorption/desorption processes. What's more, conclusion is drawn that about 40% ^90Sr released by Daya Bay Nuclear Power Plant will be adsorbed by suspended sediment and 20% by seabed sediment, only about 40% ^90St will remain in the sea near Daya Bay Nuclear Power Plant in South China Sea.