位置:成果数据库 > 期刊 > 期刊详情页
MapReduce环境下的并行复杂网络链路预测
  • ISSN号:1000-9825
  • 期刊名称:软件学报
  • 时间:0
  • 页码:3175-3186
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京邮电大学北京市智能通信软件与多媒体重点实验室,北京100876
  • 相关基金:国家自然科学基金(90924029,60905025,61074128)
  • 相关项目:非常规突发事件中网络舆情作用机制与相关技术研究
中文摘要:

为使链路预测应用于大型复杂网络,设计并实现了一种基于MapReduce计算模型的并行链路预测算法,包含了9种基于局部信息的相似性指标,在稀疏网络上的时间复杂度为D(加.首先,在公共数据集上验证了并行算法的有效性,随着抽取因子的增加,召回率升高而准确率下降.在不同类型的10个大规模复杂网络数据集上的实验结果表明,基于MapReduce计算模型的并行链路预测算法比传统算法具有更高的效率,算法的运行时间随着并行程度的增加而下降.提出并证明了AUC(area under a receiver operating characteristic curve)评价指标的上下界,实验表明,上下界的中值和实际AUC值很接近,并且AUC评价指标侧重于预测分数值是否为0而不是分数值的大小.在网络拓扑性质中,平均聚集系数对AUC值的影响最大,并且AUC值随着网络平均聚集系数的增加而提高.

英文摘要:

To apply link prediction methods into large-scale complex network, this paper designs and implements a parallel link prediction algorithm based on MapReduce, which includes nine similarity Indices via local information. The parallel link prediction algorithm has a time complexity of O(N) in sparse networks. First, the paper verifies the validity of the algorithm on public datasets, increase in the extraction factor, recall ascends, and precision descends, The experimental results on ten large-scale datasets of variety network types show that the parallel link prediction algorithm is more effective than traditional ones, and its running time decreases with more compute units. The upper and lower bounds of AUC (area under a receiver operating characteristic curve) are proposed. The experimental results show the median of the upper and lower bounds are close to the real value of AUC, which focuses on whether prediction score is zero rather than the actual score value. The network average clustering coefficient has the greatest impact on AUC among most topological features and AUC rises as the network average clustering coefficient increases.

同期刊论文项目
期刊论文 22 会议论文 28 专利 1 著作 1
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609