A new two-dimensional lattice hydrodynamic model considering the turning capability of cars is proposed. Based on this model, the stability condition for this new model is obtained by using linear stability analysis. Near the critical point, the modified KdV equation is deduced by using the nonlinear theory. The results of numerical simulation indicate that the critical point a c increases with the increase of the fraction p of northbound cars which continue to move along the positive y direction for c = 0.3, but decreases with the increase of p for c = 0.7. The results also indicate that the cars moving along only one direction (eastbound or northbound) are most stable.
A new two-dimensional lattice hydrodynamic model considering the turning capability of cars is proposed. Based on this model, the stability condition for this new model is obtained by using linear stability analysis. Near the critical point, the modified KdV equation is deduced by using the nonlinear theory. The results of numerical simulation indicate that the critical point ac increases with the increase of the fraction p of northbound cars which continue to move along the positive y direction for c = 0.3, but decreases with the increase of p for c = 0.7. The results also indicate that the cars moving along only one direction (eastbound or northbound) are most stable.