位置:成果数据库 > 期刊 > 期刊详情页
导数平方和准则与SVM参数优化
  • ISSN号:1004-731X
  • 期刊名称:《系统仿真学报》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]南京大学电了科学与工程系,南京江苏210093
  • 相关基金:国家自然科学基金面上项目(60275041)
中文摘要:

支持向量机(SVM)的性能与SVM参数的选择有关。SVM参数的优化需要一个准则。针对核函数选择RBF形式的情况,提出了一个新的SVM参数优化的准则,称作导数平方和准则。与著名的SVM参数优化方法如交叉验证或Radius/Margin Bound准则方法相比,利用提出的参数优化准则得到的分类面能够在原空间对样本集“平分秋色”,体现了SVM分类器的结构风险最小化的原则,而且算法简单、计算量小、更易于实现。

英文摘要:

The generalization performance of a Support Vector Machine (SVM) is determined by its hyperparameters. A criterion should be given first when the hyperparameters are optimized. A new criterion called the sum of the squared derivatives was proposed. Compared with the already well-known hyperparameters optimization method such as k ? fold cross-validation method or Radius/Margin Bound method, the class-separating hyper-surface designed based on this criterion could ‘leg and leg’ the whole original input space for all the samples, thus it supports the structural risk minimization principle better. Moreover, the algorithm based on this criterion is simple, and needs less computation, thus it can be implemented easily.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《系统仿真学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:北京仿真中心 中国仿真学会
  • 主编:李伯虎
  • 地址:北京市海淀区永定路50号院
  • 邮编:100039
  • 邮箱:simu-xb@vip.sina.com
  • 电话:010-88527147
  • 国际标准刊号:ISSN:1004-731X
  • 国内统一刊号:ISSN:11-3092/V
  • 邮发代号:82-9
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:51729