位置:成果数据库 > 期刊 > 期刊详情页
基于APSO算法的电力系统无功优化
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]东北大学信息科学与工程学院,沈阳110004, [2]辽宁省电力有限公司,沈阳110000
  • 相关基金:国家自然科学基金资助项目(60274009);教育部博士点基金资助项目(20020145007)
中文摘要:

针对粒子群优化算法易早熟收敛的缺点,提出一种自适应粒子群优化算法(ASPO),将物种的概念引入种群多样性测度中,利用种群多样性信息对惯性权重进行非线性的调整,并引入速度变异算子和位置交换算子,增强算法的全局收敛性能。将APSO算法应用于电力系统无功优化,对IEEE-30节点系统进行仿真计算,仿真结果表明,系统网损从5.988MW降到4.889MW,下降率为18.36%,算法的收敛精度和收敛稳定性均较当前常用方法有明显的提高。

英文摘要:

This paper presents Adaptive Particle Swarm Optimization(APSO) algorithm to solve the precocious convergence problem of Particle Swarm Optimization(PSO) algorithm. The notion of species is introduced into population diversity measure. Inertia weight is nonlinearly adjusted by using population diversity information. Velocity mutation factor and position crossover factor are both introduced and the global performance is improved. The algorithm is applied in reactive power optimization. Simulation results of the standard IEEE-30-bus power system indicate that active power losses are reduced form 5.988 MW to 4.889 MW(18.36% reduction) and APSO is superior to current methods for finding the best solution, in terms of both solution quality and algorithm robustness.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139