位置:成果数据库 > 期刊 > 期刊详情页
基于RSS手指模的煤矿井下WLAN定位方法
  • ISSN号:1000-9787
  • 期刊名称:《传感器与微系统》
  • 时间:0
  • 分类:TP929.4[自动化与计算机技术]
  • 作者机构:[1]中国矿业大学物联网感知矿山研究中心信息与电气工程学院,江苏徐州221008
  • 相关基金:国家自然科学基金资助项目(60972059)
中文摘要:

到达信号强度(RSS)手指模定位技术已广泛应用于室内定位技术,提出了适用于煤矿井下由于电磁波多径效应而变得复杂的环境的RSS手指模定位算法。通过对煤矿井下电磁环境信息的采集,对采集到的信息进行处理,使用贝叶斯公式法估计出概率较大的3个位置,然后再使用最邻近法的欧几里德距离估计出位置。通过对实验数据的统计分析,仿真结果表明:提出的基于RSS手指模改进的融合算法的节点定位精度要比K邻近法的定位精度要高,定位性能要优越。

英文摘要:

Received signal strength (RSS)fingerprinting is widely used in the indoor localization technology. The RSS finger mode localization algorithm is put forward to use in the complex underground mine environment. Through the information of electromagnetic environment, the collected information is processed, the larger three probability position is estimated using Bayesian formula method, and the location is estimated using Euclidean distance of the nearest formula. By the statistical analysis on experiment data, the simulation results show that the localization precision of the advanced algorithm based on RSS fingerprinting is better than the K nearest algorithm, and its:performance is superior.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《传感器与微系统》
  • 北大核心期刊(2011版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:中国电子科技集团公司第四十九研究所
  • 主编:吴亚林
  • 地址:哈尔滨市南岗区一曼街29号四十九所
  • 邮编:150001
  • 邮箱:st_chinasensor@126.com
  • 电话:0451-82510965
  • 国际标准刊号:ISSN:1000-9787
  • 国内统一刊号:ISSN:23-1537/TN
  • 邮发代号:14-203
  • 获奖情况:
  • 获全国优秀科技期刊三等奖,获1996年度黑龙江省科技期刊评比,优秀科技期刊壹等奖,获《CAJ-CD》执行优秀奖,获信息产业部2001-2002年度电子科技期刊规范化奖,获信息产业部2003-2004年度优秀电子科技期刊奖,获信息产业部2005-2006年度优秀电子科技期刊奖,获工业和信息化部2007-2008年度电子精品科技期刊奖
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版)
  • 被引量:10819