在多目标多任务情况下,通常要求雷达具有多种工作模式,以实现搜索、跟踪等不同功能。传统雷达在某一时刻只能实现一种功能,工作模式不够灵活,很难高效利用系统资源。针对此问题,该文提出一种MIMO雷达多模式波形设计方法,该方法以方向图逼近、期望方向的信号功率谱或频谱逼近等为准则,在恒模约束下建立关于波形矩阵的多目标优化模型,并采用共轭梯度方法进行优化求解。仿真结果表明,所设计波形在空域上具有多波束方向图,波束指向上的信号具有多种工作模式的特性,可以同时实现搜索、跟踪等功能。
In the scenario of multiple targets and multiple tasks, radar should have multiple functions to realize different modes, such as search and tracking. Traditional radar can only implement one function and the working mode is not flexible, which may result in inefficient use of the system resources. In this paper, a MIMO radar waveform design method is proposed to realize multiple modes. Based on the criterions of beampattern matching, power spectrum matching in the desired direction or frequency spectrum matching, a multi-objective optimization model for the waveform matrix with constant modulus constraint is established, and is solved by the conjugate gradient method. The numerical results show that the optimized waveforms have multiple beams and different modes in the beam directions, which can simultaneously realize search, tracking and so on.