为了解高周振动载荷对于涡轮叶片高温疲劳性能的影响,对某型涡轮叶片进行高低周复合疲劳试验.试验结果表明,在低周载荷基础上叠加高频振动载荷,显著缩短了叶片的疲劳寿命;复合疲劳的分散性很大,且不存在疲劳极限,当叶片高周循环次数超过10^7时,继续试验叶片仍会发生断裂;在双对数坐标下,叶片的振动应力与其高周循环寿命成线性关系,即复合疲劳特性曲线(应力-寿命曲线、概率应力-寿命曲线)服从双对数线性规律,进一步研究发现该规律对于高温合金材料的复合疲劳特性曲线具有普遍性.
The effect of the high cycle vibration load on the high-temperature fatigue properties of the turbine blade were addressed. Combined high and low cycle fatigue tests were carried out on several blade specimens. The results show that the superposition of high-frequency vibration on low-cycle load can significantly reduce the fatigue life of the blade. It is noteworthy that combined high and low cycle fatigue has two features: great dispersion and no fatigue limit. The former is exhibited by much broader life range than the low cycle fatigue (LCF) test, and the latter indicated by fracture of the blades over 107 high cycles (which is considered as the life limit of the metal materials for the invariable-amplitude fatigue). In addition, the fatigue data suggest a double logarithmic linear relationship between vibration stress level and the combined fatigue life. Further research has found that the law for superalloys operates universally .