传统的分词器在微博文本上不能达到好的性能,主要归结于:(1)缺少标注语料;(2)存在大量的非规范化词.针对这两类问题,文中提出一个分词和文本规范化的联合模型,该模型在迁移分词基础上,通过扩充迁移行为来实现文本规范化,进而对规范的文本进行分词.在实验中,采用大量的规范标注文本及少量的微博标注文本进行训练,实验结果显示,该模型具有较好的域适应性,其分词错误率比传统的方法减少了10.35%.