位置:成果数据库 > 期刊 > 期刊详情页
巷道煤壁在地应力作用下失稳特征的试验研究
  • ISSN号:1008-4495
  • 期刊名称:《矿业安全与环保》
  • 时间:0
  • 分类:O415.5[理学—理论物理;理学—物理] O343.1[理学—固体力学;理学—力学]
  • 作者机构:[1]College of Science, Civil Aviation University of China, Tianjin 300300, P. R. China, [2]College of Mechanical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
  • 相关基金:Project supported the National Natural Science Foundation of China (Nos. 10732020, 11072008, and 11102226), the Scientific Research Foundation of Civil Aviation University of China (No. 2010QD 04X), and the Fundamental Research Funds for the Central Universities of China (Nos. ZXH2011D006 and ZXH2012K004)
中文摘要:

Global bifurcations and multi-pulse chaotic dynamics for a simply supported rectangular thin plate are studied by the extended Melnikov method.The rectangular thin plate is subject to transversal and in-plane excitation.A two-degree-of-freedom nonlinear nonautonomous system governing equations of motion for the rectangular thin plate is derived by the von Karman type equation and the Galerkin approach.A one-toone internal resonance is considered.An averaged equation is obtained with a multi-scale method.After transforming the averaged equation into a standard form,the extended Melnikov method is used to show the existence of multi-pulse chaotic dynamics,which can be used to explain the mechanism of modal interactions of thin plates.A method for calculating the Melnikov function is given without an explicit analytical expression of homoclinic orbits.Furthermore,restrictions on the damping,excitation,and detuning parameters are obtained,under which the multi-pulse chaotic dynamics is expected.The results of numerical simulations are also given to indicate the existence of small amplitude multi-pulse chaotic responses for the rectangular thin plate.

英文摘要:

Global bifurcations and multi-pulse chaotic dynamics for a simply supported rectangular thin plate are studied by the extended Melnikov method. The rectangular thin plate is subject to transversal and in-plane excitation. A two-degree-of-freedom nonlinear nonautonomous system governing equations of motion for the rectangular thin plate is derived by the von Karman type equation and the Galerkin approach. A one-to- one internal resonance is considered. An averaged equation is obtained with a multi-scale method. After transforming the averaged equation into a standard form, the extended Melnikov method is used to show the existence of multi-pulse chaotic dynamics, which can be used to explain the mechanism of modal interactions of thin plates. A method for calculating the Melnikov function is given without an explicit analytical expression of homoclinic orbits. Furthermore, restrictions on the damping, excitation, and detuning parameters are obtained, under which the multi-pulse chaotic dynamics is expected. The results of numerical simulations are also given to indicate the existence of small amplitude multi-pulse chaotic responses for the rectangular thin plate.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《矿业安全与环保》
  • 中国科技核心期刊
  • 主管单位:国家煤矿安全监察局
  • 主办单位:中煤科工集团重庆研究院 国家煤矿安全技术工程研究中心
  • 主编:黄声树
  • 地址:重庆市九龙坡区二郎科城路6号·中煤科工集团重庆研究院内
  • 邮编:400039
  • 邮箱:kyaqyhbgg@163.com
  • 电话:023-65239221 65235167
  • 国际标准刊号:ISSN:1008-4495
  • 国内统一刊号:ISSN:50-1062/TD
  • 邮发代号:78-35
  • 获奖情况:
  • 1990年1月荣获四川省首届科技期刊评比编辑加工奖,1992年版全国中文核心期刊,1993年12月荣获四川省第二届科技期刊评比编辑加工奖,1995年7月荣获四川省首届优秀期刊奖,1996年版全国中文核心期刊,1997年12月荣获重庆市优秀期刊二等奖,2000年12月荣获首届《CAJ-CD规范》执行优秀奖,2004年版全国中文核心期刊,2008年版全国中文核心期刊,2008年重庆市一级期刊,2010年重庆市一级期刊
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:10574