位置:成果数据库 > 期刊 > 期刊详情页
Effects of Surface Drag on Upper-Level Frontogenesis within a Developing Baroclinic Wave
  • ISSN号:2095-6037
  • 期刊名称:《气象学报:英文版》
  • 时间:0
  • 分类:P435[天文地球—大气科学及气象学]
  • 作者机构:[1]Key Laboratory of Mesoscale Severe Weather/MOE, and School of Atmospheric Sciences, Nanjing University, Nanjing 210093 China, [2]Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, CMA, Guangzhou 510080 China, [3]Institute of Tropical and Marine Meteorology, CMA, Guangzhou 510080 China
  • 相关基金:National Natural Science Foundation of Chi- na through Grants (41461164008, 41130964); National Key Project for Basic Research (973 Project) (2015452803); Science and Technology Planning Project for Guangdong Province (2012A061400012); China Meteorological Administration (GY-HY201406009)
中文摘要:

In the previous study, the influences of introducing larger- and smaller-scale errors on the background error covariances estimated at the given scales were investigated, respectively. This study used the covariances obtained in the previous study in the data assimilation and model forecast system based on three-dimensional variational method and the Weather Research and Forecasting model. In this study, analyses and forecasts from this system with different covariances for a period of one month were compared, and the causes for differing results were presented. The variations of analysis increments with different-scale errors are consistent with those of variances and correlations of background errors that were reported in the previous paper. In particular, the introduction of smaller-scale errors leads to greater amplitudes in analysis increments for medium-scale wind at the heights of both high- and low-level jets. Temperature and humidity analysis increments are greater at the corresponding scales at the middle- and upper-levels. These analysis increments could improve the intensity of the jet-convection system that includes jets at different levels and the coupling between them that is associated with latent heat release. These changes in analyses will contribute to more accurate wind and temperature forecasts in the corresponding areas. When smaller-scale errors are included, humidity analysis increments are significantly enhanced at large scales and lower levels, to moisten southern analyses. Thus, dry bias can be corrected, which will improve humidity forecasts. Moreover, the inclusion of larger-(smaller-) scale errors will be beneficial for the accuracy of forecasts of heavy(light) precipitation at large(small) scales because of the amplification(diminution) of the intensity and area in precipitation forecasts.

英文摘要:

In the previous study, the influences of introducing larger- and smaller-scale errors on the background error covariances estimated at the given scales were investigated, respectively. This study used the eovariances obtained in the previous study in the data assimilation and model forecast system based on three-dimensional variational method and the Weather Research and Forecasting model. In this study, analyses and forecasts from this system with different covariances for a period of one month were compared, and the causes for differing results were presented. The varia- tions of analysis increments with different-scale errors are consistent with those of variances and correlations of back- ground errors that were reported in the previous paper. In particular, the introduction of smaller-scale errors leads to greater amplitudes in analysis increments for medium-scale wind at the heights of both high- and low-level jets. Tem- perature and humidity analysis increments are greater at the corresponding scales at the middle- and upper-levels. These analysis increments could improve the intensity of the jet-convection system that includes jets at different levels and the coupling between them that is associated with latent heat release. These changes in analyses will contribute to more ac- curate wind and temperature forecasts in the corresponding areas. When smaller-scale errors are included, humidity analysis increments are significantly enhanced at large scales and lower levels, to moisten southern analyses. Thus, dry bias can be corrected, which will improve humidity forecasts. Moreover, the inclusion of larger- (smaller-) scale errors will be beneficial for the accuracy of forecasts of heavy (light) precipitation at large (small) scales because of the ampli- fication (diminution) of the intensity and area in precipitation forecasts.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《气象学报:英文版》
  • 主管单位:
  • 主办单位:中国气象学会
  • 主编:
  • 地址:北京市中关村南大街46号
  • 邮编:100081
  • 邮箱:cmsams@163.com
  • 电话:010-68407634
  • 国际标准刊号:ISSN:2095-6037
  • 国内统一刊号:ISSN:11-2277/P
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰地学数据库,荷兰文摘与引文数据库,美国剑桥科学文摘,美国科学引文索引(扩展库)
  • 被引量:280