以低碳铝镇静钢对研究对象,利用有限元数值模拟方法,分别对连退炉内加热段和缓冷段中带钢相变对带钢温度分布和带钢屈曲变形的影响进行研究。研究结果表明:对于在两相区进行连续退火热处理的钢种,在加热段,相变能有效抑制由带钢热应力引起的横向诱导压应力的增大,并且降低带钢温度和横向温差,从而抑制带钢发生屈曲变形,在760~820℃退火时,相变对带钢屈曲变形的抑制作用随着退火温度的升高先增大再减小;在缓冷段,相变减弱了带钢热应力减小横向诱导压应力的作用,并且升高带钢温度,从而使带钢容易发生屈曲变形;退火温度越高,发生相变的带钢越容易屈曲变形。
Low-carbon Al-killed steel was selected and finite element method(FEM) was used to investigate the influence of phase transformation on strip temperature distribution and buckling in the heating and slow cooling sections of the continuous annealing furnace. The results show that in the heating section, phase transformation can inhibit the increase of transverse compressive stress caused by thermal stress and reduce temperature and transverse temperature difference of strip effectively, and thus it is helpful to prevent the strip buckling. Inhibition of phase transformation on strip buckling firstly increases and then decreases when annealed at 760-820 ℃. In the slow cooling section, phase transformation weakens the decrease of transverse compressive stress caused by thermal stress and reduces temperature of strip, which promotes the probability of strip buckling. Strip buckling is more likely to occur at higher annealing temperature.