对非连通图(P2∨C n)∪St(m)及(P2∨P n)∪St(m)的优美性进行了研究,证明了当n≡0(mod4),n≥8,m≥n-1时,(P2∨C n)∪St(m)是优美图;当n≡0(mod4),n≥8,m1=(n/2)-1,m2≥(n/2)时,(P2∨C n)∪St(m1)∪St(m2)是优美图;当n≡0(mod2),n≥6,m≥(n/2)时,(P2∨P n)∪St(m)是优美图;当n≡0(mod2),n≥6,m1=(n/2)-1,m1+m2≥(n/2)时,(P2∨P n)∪St(m1)∪St(m2)是优美图.
This article mainly investigate the the gracefulness of unconnected graphs(P2∨Cn) USt(m) and(P2∨Pn) USt(m),showing that for n≡0(mod4),n≥8,m≥n-1,(P2∨Cn) USt(m) is a graceful graph;for n≡0(mod4),n≥8,m1=(n/2)- 1,m2≥(n/2),(P2∨Cn) USt(m1) ∪St(m2) is a graceful graph;for n≡0(mod2),n≥6,m≥(n/2),(P2∨Pn) ∪St(m) is a graceful graph; and for the situation that n≡0(mod2),n≥6,m1=(n/2)- 1,m1+ m2≥(n/2),(P2∨Pn) ∪St(m1) ∪St(m2) is a graceful graph.