位置:成果数据库 > 期刊 > 期刊详情页
A New Sample-Selection and Modeling Method Based on Near-Infrared Spectroscopy and Its Industrial Application
  • ISSN号:1000-0054
  • 期刊名称:《清华大学学报:自然科学版》
  • 时间:0
  • 分类:TE6[石油与天然气工程—油气加工工程]
  • 作者机构:[1]Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
  • 相关基金:National Natural Science Foundations of China (Nos. U1162202, 61222303 ) ; National High-Tech Research and Development Program of China ( No. 2013AA040701 ) ; the Fundamental Research Funds for the Central Universities and Shanghai Leading Academic Discipline Project, China (No. B504)
中文摘要:

Near-infrared( NIR) spectroscopy has been widely employed as a process analytical tool( PAT) in various fields; the most important reason for the use of this method is its ability to record spectra in real time to capture process properties. In quantitative online applications,the robustness of the established NIR model is often deteriorated by process condition variations,nonlinear of the properties or the high-dimensional of the NIR data set. To cope with such situation,a novel method based on principal component analysis( PCA) and artificial neural network( ANN) is proposed and a new sample-selection method is mentioned. The advantage of the presented approach is that it can select proper calibration samples and establish robust model effectively. The performance of the method was tested on a spectroscopic data set from a refinery process. Compared with traditional partial leastsquares( PLS),principal component regression( PCR) and several other modeling methods, the proposed approach was found to achieve good accuracy in the prediction of gasoline properties. An application of the proposed method is also reported.

英文摘要:

Near-infrared (NIR) spectroscopy has been widely employed as a process analytical tool (PAT) in various fields; the most important reason for the use of this method is its ability to record spectra in real time to capture process properties. In quantitative online applications, the robustness of the established NIR model is often deteriorated by process condition variations, nonlinear of the properties or the high-dimensional of the NIR data set. To cope with such situation, a novel method based on principal component analysis (PCA) and artificial neural network (ANN) is proposed and a new sample-selection method is mentioned. The advantage of the presented approach is that it can select proper calibration samples and establish robust model effectively. The performance of the method was tested on a spectroscopic data set from a refinery process. Compared with traditional partial leastsquares (PLS) , principal component regression (PCR) and several other modeling methods, the proposed approach was found to achieve good accuracy in the prediction of gasoline properties. An application of the proposed method is also reported.

同期刊论文项目
期刊论文 131 会议论文 8 获奖 1
同项目期刊论文
期刊信息
  • 《清华大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:教育部
  • 主办单位:清华大学
  • 主编:梁恩忠
  • 地址:北京市海淀区清华大学学研大厦B座908
  • 邮编:100084
  • 邮箱:xuebaost@tsinghua.edn.cn
  • 电话:010-62788108 62792976
  • 国际标准刊号:ISSN:1000-0054
  • 国内统一刊号:ISSN:11-2223/N
  • 邮发代号:2-90
  • 获奖情况:
  • 国家期刊奖,国家“双高”期刊,1992年以来,历次国家级和省部级一等奖,第一、二届全国优秀科技期刊一等奖,教育部优秀期...,第三届中国出版政府奖提名奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,美国应用力学评论,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:43470