针对高度耦合的月球车轮地相互作用力学积分模型很难在实际中应用的问题,采用应力分布线性化、忽略比重较小的耦合项等方法,推导了解耦的封闭解析模型.利用轮地相互作用测试平台,对具有不同尺寸和不同轮刺的6种车轮进行试验.基于解耦模型研究了土壤参数的辨识方法,对轮地作用过程中的8个未知参数进行了辨识,并利用试验数据验证了该方法的合理性.由于辨识的参数对于简化误差具有补偿作用,解耦解析模型可以对挂钩牵引力、驱动阻力矩、沉陷量、滑转率等进行精度较高的预测,进而可以较好地应用于月球车的动力学仿真和控制算法设计.
Aiming at the difficulties of applying highly coupled integrated model for wheel-soil interaction mechanics, a closed-form decoupled analytical model is derived by linearizing stress distribution and ignoring the coupled term with small proportion. Six kinds of wheels with different dimensions and wheel lugs were used to do experiments with wheel-soil interaction testbed. The soil parameter identification method is researched based on the decoupled model to estimate the eight unknown wheel-soil interaction parameters, and the method is verified by the experimental data. Due to the compensation role of identified parameters, the decoupled analytical model can predict the drawbar pull, resistance moment of driving, wheel sinkage and slip ratio with high precision, which makes it reasonable to be applied to dynamics simulation and control algorithm design of lunar rover.