A novel deterministic secure quantum communication(DSQC)scheme is presented based on EinsteinPodolsky-Rosen(EPR)pairs and single photons in this study.In this scheme,the secret message can be encoded directly on the first particles of the prepared Bell states by simple unitary operations and decoded by performing the Bell-basis measurement after the additional classic information is exchanged.In addition,the strategy with two-step transmission of quantum data blocks and the technique of decoy-particle checking both are exploited to guarantee the security of the communication.Compared with some previous DSQC schemes,this scheme not only has a higher resource capacity,intrinsic efciency and total efciency,but also is more realizable in practical applications.Security analysis shows that the proposed scheme is unconditionally secure against various attacks over an ideal quantum channel and still conditionally robust over a noisy and lossy quantum channel.
A novel deterministic secure quantum communication (DSQC) scheme is presented based on Einstein- Podolsky-Rosen (EPR) pairs and single photons in this study. In this scheme, the secret message can be encoded directly on the first particles of the prepared Bell states by simple unitary operations and decoded by performing the Bell-basis measurement after the additional classic information is exchanged. In addition, the strategy with two-step transmission of quantum data blocks and the technique of decoy-particle checking both are exploited to guarantee the security of the communication. Compared with some previous DSQC schemes, this scheme not oniy has a higher resource capacity, intrinsic efficiency and total efficiency, but also is more realizable in practical applications. Security anaJysis shows that the proposed scheme is unconditionally secure against various attacks over an ideal quantum channel and still conditionally robust over a noisy and lossy quantum channel.