位置:成果数据库 > 期刊 > 期刊详情页
TA1板材对角拉伸试验及数值模拟研究
  • ISSN号:1000-3940
  • 期刊名称:锻压技术
  • 时间:2015
  • 页码:138-144
  • 分类:TD[矿业工程]
  • 作者机构:[1]School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China, [2]Collaborative Innovation Center of Advanced Aero-Engine, Beihang University, Beijing 100191, China, [3]Department of Mechanical and Manufacturing Engineering, Aalborg University, Aalborg 9220, Denmark
  • 相关基金:Project(2014ZX04002041) supported by the National Science and Technology Major Project, China; Project(51175024) supported by theNational Natural Science Foundation of China
  • 相关项目:冲击液压成形技术及其基础理论
中文摘要:

Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work. The sensitivity analysis was provided to have an insight in the effect of the evaluated process parameters. Furthermore, in order to minimize the springback problem, an accurate springback simulation model of the part was established and validated. The effects of the element size and timesteps on springback model were further investigated. Results indicate that the custom mesh size is beneficial for the springback simulation, and the four timesteps are found suited for the springback analysis for the complex geometry part. Finally, a strategy for reducing the springback by changing the geometry of the blank is proposed. The optimal blank geometry is obtained and used for manufacturing the part.

英文摘要:

Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work. The sensitivity analysis was provided to have an insight in the effect of the evaluated process parameters. Furthermore, in order to minimize the springback problem, an accurate springback simulation model of the part was established and validated. The effects of the element size and timesteps on springback model were further investigated. Results indicate that the custom mesh size is beneficial for the springback simulation, and the four timesteps are found suited for the springback analysis for the complex geometry part. Finally, a strategy for reducing the springback by changing the geometry of the blank is proposed. The optimal blank geometry is obtained and used for manufacturing the part.

同期刊论文项目
期刊论文 23 会议论文 5 著作 1
同项目期刊论文
期刊信息
  • 《锻压技术》
  • 北大核心期刊(2011版)
  • 主管单位:中国机械工业联合会
  • 主办单位:北京机电研究所 中国机械工程学会塑性工程学会
  • 主编:陆辛
  • 地址:北京市海淀区学清路18号北京机电研究所
  • 邮编:100083
  • 邮箱:fst@263.net
  • 电话:010-62920652 82415085
  • 国际标准刊号:ISSN:1000-3940
  • 国内统一刊号:ISSN:11-1942/TG
  • 邮发代号:2-322
  • 获奖情况:
  • 全国中文核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9672