Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work. The sensitivity analysis was provided to have an insight in the effect of the evaluated process parameters. Furthermore, in order to minimize the springback problem, an accurate springback simulation model of the part was established and validated. The effects of the element size and timesteps on springback model were further investigated. Results indicate that the custom mesh size is beneficial for the springback simulation, and the four timesteps are found suited for the springback analysis for the complex geometry part. Finally, a strategy for reducing the springback by changing the geometry of the blank is proposed. The optimal blank geometry is obtained and used for manufacturing the part.
Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work. The sensitivity analysis was provided to have an insight in the effect of the evaluated process parameters. Furthermore, in order to minimize the springback problem, an accurate springback simulation model of the part was established and validated. The effects of the element size and timesteps on springback model were further investigated. Results indicate that the custom mesh size is beneficial for the springback simulation, and the four timesteps are found suited for the springback analysis for the complex geometry part. Finally, a strategy for reducing the springback by changing the geometry of the blank is proposed. The optimal blank geometry is obtained and used for manufacturing the part.