这份报纸建议频率域随机解调(FRD ) 和宽带的一种联合技术数字 predistorter (DPD ) 。这种技术能在反馈环以低采样率线性化力量放大器(舞步) 。基于察觉到压缩的理论(CS ) , FRD 方法 preprocesses 用有通过多重平行隧道的不同阶段的频率领域采样信号的原来的信号。然后, FRD 方法被用于宽带 DPD 系统在反馈循环限制采样进程。建议技术用 20 MHz 直角的频率部门 multiplexing (OFDM ) 驾驶的 30 W Class-F 宽带 PA 被估计信号,和 40 W 轧了 40 MHz 4 搬运人驾驶的 Doherty PA 长期的进化(LTE ) 信号。模拟和好 linearization 性能能在更低的采样被完成的试验性的结果表演由使用建议联合技术 FRD-DPD 与大约 24 dBc 评估邻近的隧道力量比率(ACPR ) 改进。而且,规范的均方差(NMSE ) 的表演和错误向量大小(EVM ) 很也与常规技术相比被改进了。
This paper proposes a combination technique of the frequency-domain random demodulation(FRD) and the broadband digital predistorter(DPD). This technique can linearize the power amplifiers(PAs) at a low sampling rate in the feedback loop. Based on the theory of compressed sensing(CS), the FRD method preprocesses the original signal using the frequency domain sampling signal with different stages through multiple parallel channels. Then the FRD method is applied to the broadband DPD system to restrict the sampling process in the feedback loop. The proposed technique is assessed using a 30 W Class-F wideband PA driven by a 20 MHz orthogonal frequency division multiplexing(OFDM) signal, and a 40 W Ga N Doherty PA driven by a 40 MHz 4-carrier long-term evolution(LTE) signal. The simulation and experimental results show that good linearization performance can be achieved at a lower sampling rate with about- 24 d Bc adjacent channel power ratio(ACPR) improvement by applying the proposed combination technique FRD-DPD. Furthermore, the performance of normalized mean square error(NMSE) and error vector magnitude(EVM) also has been much improved compared with the conventional technique.