位置:成果数据库 > 期刊 > 期刊详情页
时间-空间双边分数阶扩散方程微分阶数的反演
  • ISSN号:1673-2618
  • 期刊名称:《滨州学院学报》
  • 时间:0
  • 分类:O175.29[理学—数学;理学—基础数学]
  • 作者机构:山东理工大学理学院,淄博255049
  • 相关基金:国家自然科学基金(11371231,10171148)资助项目.
中文摘要:

应用变分伴随方法研究终值数据条件下一维对流弥散方程中确定空间依赖源项系数的反问题.基于正问题的伴随问题,建立一个联系已知数据与未知系数的变分恒等式,进而验证误差泛函的极小点即为反问题的一个解.进一步,利用变分恒等式及对伴随问题解的控制,证明反问题解的唯一性.最后,应用最佳摄动量算法给出数值反演算例说明该反问题的数值稳定性与唯一性.

英文摘要:

This article deals with an inverse problem of determining a continuous spacedependent source coefficient in the advection dispersion equation with final observations using variational adjoint method. Since the solution operator from the unknown to the known for the inverse problem is linear, the two-order error functional of the unknown is convex by which existence of the minimum of the error functional is obtained. A variational identity connecting the known data with the unknown is established by controlling the solution of an adjoint problem to the forward problem, with which existence of the solution to the inverse problem is proved by computing the first variation of the error functional. Furthermore, uniqueness of the inverse problem is proved by utilizing a variational identity connecting the changes of the known data with that of the unknown and the denseness of the set of the solutions to the adjoint problem in the square integrable space. Finally, the optimal perturbation algorithm is applied to solve the inverse problem numerically, and two numerical inversions with random noisy data are presented to support the numerical stability and uniqueness of the inverse problem.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《滨州学院学报》
  • 主管单位:山东省教育厅
  • 主办单位:滨州学院
  • 主编:邹丽娜
  • 地址:山东省滨州市黄河五路391号
  • 邮编:256603
  • 邮箱:jbuwhb@163.com
  • 电话:0543-3190158
  • 国际标准刊号:ISSN:1673-2618
  • 国内统一刊号:ISSN:37-1435/Z
  • 邮发代号:
  • 获奖情况:
  • 学报被评为中国高校特色科技期刊、全国优秀社科学...
  • 国内外数据库收录:
  • 被引量:1737