位置:成果数据库 > 期刊 > 期刊详情页
基于AdaBoost改进的多分类器动态集成算法
  • ISSN号:1000-7024
  • 期刊名称:《计算机工程与设计》
  • 时间:0
  • 分类:TP311.13[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]贵州大学计算机科学与技术学院,贵州贵阳550025
  • 相关基金:贵州大学青年教师科研基金项目(2012017)
中文摘要:

为提高分类准确率,研究一种改进的多分类器动态集成算法。调整AdaBoost,使其适用于加权训练集;引入属性相关度来标记待分类样本和训练集决策属性之间的相似程度,实现以动态筛选的方式组合最终的分类模型。该算法避免了在分类模型集成过程中对训练集的重复抽取,弥补了模型中单分类器位置固定不变的不足。实验结果表明,该算法能有效提高分类精度和泛化能力。

英文摘要:

To improve the accuracy rate of classification,an improved dynamic integration algorithm of multiple classifiers was studied.The AdaBoost algorithm was redefined,so that it was applicable to the weighted training set.The definition of the attribute correlation between the sample to be tested and decision attributes of the training set was introduced,and the final classification model was assembled by means of dynamic selection.The improved algorithm avoids re-sampling of training sets,and resolves the problem that the improved AdaBoost generates the aptotic array of classifiers to all the samples.Experimental results show that the proposed algorithm effectively improves the classification precision,and gets better classification results.

同期刊论文项目
期刊论文 117
同项目期刊论文
期刊信息
  • 《计算机工程与设计》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团
  • 主办单位:中国航天科工集团二院706所
  • 主编:汤铭瑞
  • 地址:北京142信箱37分箱
  • 邮编:100854
  • 邮箱:ced@china-ced.com
  • 电话:010-68389884
  • 国际标准刊号:ISSN:1000-7024
  • 国内统一刊号:ISSN:11-1775/TP
  • 邮发代号:82-425
  • 获奖情况:
  • 中国科学引文数据库来源期刊,中国学术期刊综合评价数据库来源期刊,中国科技论文统计与分析用期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:45616