欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
Analytic Solutions, Darboux Transformation Operators and Supersymmetry for A Generalized One-Dimensi
ISSN号:0096-3003
期刊名称:Applied Mathematics and Computation
时间:0
页码:7308-7321
相关项目:非线性水波的同伦分析研究
作者:
Tian S.F.|Zhou S.W.|Jiang W.Y.|Zhang H.Q.|
同期刊论文项目
非线性水波的同伦分析研究
期刊论文 28
会议论文 3
著作 1
同项目期刊论文
Analytical Modelling for A Three-dimensional Hydrofoil with Winglets Operating Beneath A Free Surfac
Discrete Jacobi Sub-equation Method for Nonlinear Differential-difference Equations
Darboux Transformation and New Periodic Wave Solutions of Generalized Derivative Nonlinear Schroding
Differential Transform Method for Solving Solitary Wave with Discontinuity
Binary Darboux-Backlund Transformation and New Singular Soliton Solutions for the Nonisospectral Kad
Constructing 2N-Solution Periodic Wave Solution for Generalized Derivative Nonlinear Schrodinger Equ
Soliton Solutions by Darboux Transformation and Some Reductions for A New Hamiltonian Lattice Hierar
Lax Pair, Binary Daroux Transformation and New Grammian Solutions of Nonisospectral Kadomtsev-Petvia
Some Types of Solutions and Generalized Binary Darboux Transformation for The mKP Equation with Self
Riemann Theta Functions Periodic Wave Solutions and Rational Characteristics for The Nonlinear Equat
A Systematic Method to Construct Polynomials Possessing Linear Superposition Principle and Dispersio
A Kind of Explicit Riemann Theta Functions Periodic Waves Solutions for Discrete Soliton Equations
Generalized Weissinger’s L-method for Prediction of Curved Wings Operating above A Free Surfac
Finding Discontinuous Solution to The Differential-difference Equationsby Homotopy Analysi Method
Conservation Laws, Bright Matter Wave Solitons and Modulational Instability of Nonlinear Schrodinger
改进的微分变换法对不连续冲击波的求解
Fokas-Lenells方程的代数几何解
Super Riemann Theta Function Periodic Wave Solutions and Rational Characteristics for A Supersymmetr
非线性发展方程的 Wronskian 解及 Young 图证明
Solving shock wave with discontinuity by enhanced differential transform method (EDTM)