Reversible addition-fragmentation chain transfer(RAFT) mediated grafting of acrylonitrile onto Polyethylene/Poly(ethylene terephthalate)(PE/PET) composite fibers was performed using γ-irradiation as the initial source at ambient temperature. Different initial concentrations of 2-cyanoprop-2-yl dithiobenzonate were used as the chain transfer agent. The kinetics of graft polymerization is in accordance with the living RAFT polymerization. The successful grafting of acrylonitrile is proved by Fourier transform infrared spectroscopy analysis.The results of monofilament tensile test show that mechanical properties of the fibers change slightly after grafting. Scanning electronic microscopy images of the fibers show that the surface of RAFT grafted fibers is smoother than that of fibers grafted conventionally.
Reversible addition-fragmentation chain transfer(RAFT) mediated grafting of acrylonitrile onto Polyethylene/Poly(ethylene terephthalate)(PE/PET) composite fibers was performed using γ-irradiation as the initial source at ambient temperature. Different initial concentrations of 2-cyanoprop-2-yl dithiobenzonate were used as the chain transfer agent. The kinetics of graft polymerization is in accordance with the living RAFT polymerization. The successful grafting of acrylonitrile is proved by Fourier transform infrared spectroscopy analysis.The results of monofilament tensile test show that mechanical properties of the fibers change slightly after grafting. Scanning electronic microscopy images of the fibers show that the surface of RAFT grafted fibers is smoother than that of fibers grafted conventionally.