位置:成果数据库 > 期刊 > 期刊详情页
Blind convolutive separation method for speech signals via joint block diagonalization
  • 期刊名称:Chinese Journal of Acoustics
  • 时间:0
  • 页码:45-55
  • 语言:中文
  • 分类:O241.6[理学—计算数学;理学—数学] TN912.3[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]National Lab. of Radar Signal Process, Xidian Univ. Xi'an 710071, [2]State Key Lab. of Integrated Service Networks, Xidian Univ. Xi'an 710071
  • 相关基金:This work was supported by the National Nature Science Foundation of China (60672128, 60702057) and the National 863 Project (2007AA01Z288).
  • 相关项目:移动自组织网络中充分利用MIMO的高效网络协议研究
中文摘要:

为在时间域的 overdetermined convolutive 混合模型的一个盲目讲话来源分离方法基于 mutualindependence 和讲话 signals.Taking 的短时间的 stationarity 性质经由联合 block-diagonalization 被建议所有离开斜的亚矩阵的F标准的和作为一个标准,一个新奇联合 block-diagonalization 方法被建议通过最小化相应于混合 sub-matrices.Both 的二次的子函数的一个序列估计整个混合矩阵

英文摘要:

A blind speech source separation method for the overdetermined convolutive mixture model in time-domain is proposed via joint block-diagonalization based on the mutual- independence and short-time stationarity properties of the speech signals. Taking the sum of the F-norms of all off-diagonal sub-matrices as a criterion, a novel joint block-diagonalization method is proposed to estimate the whole mixture matrix through minimizing a sequence of quadratic sub-functions corresponding to mixture sub-matrices. Both theoretical analysis and simulations show that the proposed method has much lower complexity and faster convergence speed than the classical Jacobi-like method with no performance loss. In addition, there are almost no obvious impacts of the channel order and initialization values on the convergence speed.

同期刊论文项目
同项目期刊论文