该文讨论一类具有任意多项式增长非线性项和非齐次项的反应扩散方程指数吸引子的存在性.首先,对R~3中的有界开子集Ω,分别选取解半群S(t)在L^2(Ω)和H^2(Ω)中的有界正不变吸收集来构造H^2(Ω)中的指数吸引子.然后证明对某个足够大的时间T_1,S(T_1)在这两个吸收集之间是Lipschitz连续的.最后由一种新的逼近技巧证明了对任意的g∈L^2(Ω),S(t)在L^2p-2(Ω)中存在指数吸引子.该结论推广了已有文献中的结果.
A class of reaction-diffusion equations with arbitrary polynomial growth nonlinearity f and nonhomogeneous term g are concerned in this paper.We first construct exponential attractors in H^2(Ω) for the underlying semigroup when Ω is a bounded open set in R~3.We obtain this result by proving the Lipschitz continuity between some positively invariant absorbing set in L^2(Ω) and some positively invariant absorbing set in H^2(Ω).Then,we obtain exponential attractors in L^2p-2(Ω) for any g ∈ L^2(Ω) by using a new approaching technique.This improves the result in previous references.