位置:成果数据库 > 期刊 > 期刊详情页
用于前车追踪的多特征融合粒子滤波算法改进
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京工业大学信息学部,北京100124
  • 相关基金:国家自然科学基金(No.61374143).
中文摘要:

基于特征融合的粒子滤波算法可以将多个不同的特征进行融合,增强跟踪系统鲁棒性,但是现有的算法存在着特征显著性差,算法实时性不强以及融合策略不具备通用性的缺点。针对上述问题提出了一种适用于前车追踪系统的改进融合算法,采用增强边缘信息的SULBP新特征,并通过自适应降维方法提升特征提取的实时性;利用粒子集的分布状态设计自适应融合算法解决了融合策略的通用性问题。实验结果表明,所提出的多特征融合粒子滤波算法在跟踪性能和算法实时性上均有显著地提升。

英文摘要:

The feature fusion based particle filter algorithm can make tracking system more robust,by fusing differentfeatures.However,currently these algorithms have some drawbacks,such as insignificant feature differences,poor in realtimeprocess,and confined fusion tactics.Based on that,an improved fusion algorithm for preceding vehicles trackingsystem is proposed,which adopts new intensified edge information SULBP feature,and enhances the real-time featureextraction through adaptive dimensionality reduction method.In addition,this fusion tactic appears more universal bydesigning the adaptive fusion algorithm based on the distribution state of the particle set.Indicated by the experimentsresult,this multi-feature fusion particle filter algorithm is improved in both tracking performance and feasibility.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887