GID1作为赤霉素信号转导的受体,在赤霉素作用中具有重要作用。采用同源克隆方法,利用RT-PCR和RACE技术在茶树中克隆到赤霉素受体基因GID1的cDNA全长,命名为CsGID1a(GenBank登录号为JX235369)。该基因全长1411bp,开放阅读框1023bp,编码341个氨基酸。生物信息学分析显示,CsGID1a编码的蛋白分子量为38.53kD,理论等电点为5.62;无信号肽位点,是非分泌性蛋白,具有1个跨膜区,基因被定位于细胞核内;CsGID1a氨基酸序列具有激素敏感性脂肪酶(HSL)家族蛋白的HGG、GXSXG功能域以及羧酸酯酶典型的三级结构;与其他物种的GID1相似性均在60%以上,与葡萄的相似性最大达87%、进化关系最近。荧光定量PCR结果显示,高浓度(1.0×10-5molL-1)GA3能够下调CsGID1a的表达,5h内的表达呈下降趋势;随着越冬茶芽萌动进程,CsGID1a表达量逐渐降低,特别在3月初萌发以后变化较大,推测赤霉素及其受体基因可能与茶树越冬芽解休眠相关。
GIDI (Gibberellin insensitive dwarfl), as the soluble gibberellin (GA) receptor in GA signaling pathway, plays the vital role in GA reactions. In this study, the homologous gene of GID1 was isolated with RT-PCR and RACE-PCR from tea plant (Ca- mellia sinensis). The obtained cDNA sequence, named CsGIDla, had the full-length of 1411 bp containing a 1023 bp open read- ing frame (ORF), encoding 341 amino acid residues, and was submitted to GenBank with accession number JX235369. The bio- informatics characterization indicated that CsGIDla was a non-secretory protein without a signal peptide. The molecular weight and theoretic isoelectric point of CsGIDla are 38.53 kD and 5.62, respectively. CsGIDla was located in the nucleus, encoding a protein with one transmembrane domain. CsG1Dla contained hormone sensitive lipsase family (HSL) conserved domains, HGG and GXSXG motif, and shared the plant carboxylesterase tertiary structure. Homologous alignment and phylogenetic tree showed that CsGID 1 a shared over 60% amino acid sequence similarity with that of other species, and had the highest similarity (87%) and the closest genetic relationship to Vitis vinifera. The real-time PCR analysis showed that the expression of CsGIDla was down-regulated by high concentration of GA3 (1.0~ 10-5 tool L-1) and reduced slowly during the treatment for five hours. The further experiments suggested that the expression of CsGIDla was also decreased in the process of bud sprouting. These results demonstrated that CsGIDla and GA could be associated with bud bursting in tea plant in spring.