目的 探讨切应力对与血管平滑肌细胞(VSMCs)联合培养的内皮细胞(ECs)中微管的聚集重构的影响,为阐明应力诱导血管重建的分子机制提供一些实验证据。方法应用ECs与VSMCs联合培养的平行平板流动腔系统,给ECs面施加15dyne/cm^2的层流切应力,以静态条件下联合培养的ECs为对照组,用Western Blot、免疫荧光细胞化学和图像分析等技术,研究切应力作用下与VSMCs联合培养的ECs的微管聚集的变化。结果静态联合培养组,ECs微管骨架的排列是稀疏、发散和无规律的。切应力诱导了ECs的微管的重构,微管骨架变得有序,朝切应力的方向规律的排列。切应力能够促进ECs的微管聚集,与对照组相比,切应力作用下的ECs内多聚微管的数量增加,切应力作用3h,ECs内多聚微管的数量达到峰值,之后开始下降。结论切应力诱导和促进了EC的微管骨架发生重构(聚集)。结果提示:微管可能是机械应力刺激作用的靶标,应力可能通过它改变ECs的形态,影响细胞的黏附与迁移等功能.
Objective The influence of shear stress on the assembly of microtubules in endothelial cells (ECs) was elucidated in the co-culture system with vascular smooth muscle cells to provide some experimental evidences for molecular mechanisms of shear stress-induced vascular remodeling, Methods The assembly of microtubules in ECs co-cultured with vascular smooth muscle cells (VSMCs) under shear stressor 15dyne/cm^2- was examined by Western Blot, immunocytochemistry and image analysis. ECs were co-cultured with VSMCs under static conditions as a control. Results The microtubule arrangements in the control group showed sparsely, emanative and ruleless, After laminar shear stress (1.5Pa, 15dynes/cm^2) applied to ECs co-cultured with VSMCs for 12h, a distinct change in microtubule arrangement appeared to the regular state and oriented to the direction of shear stress, Application of shear stress to the co-cultured ECs also promoted the quantitative assembly of microtubules in ECs. The polymeric tubulin mass became decreased in ECs after exposed to shear stress for 3 hours. Conclusions Shear stress induces and promotes microtubule assembly in the co-cultured ECs. Furthermore, these data suggest that microtubules could be a potential target for translating changes in externally applied mechanical stimulation to alterations in cellular phenotype and functions such as adhesion and migration.