研究微分方程f′′+A_1(z)e~(az~n)f′+A_0(z)e~(bz~n)f=F(z)的复振荡问题,其中Aj(z)(≠0)(j=0,1)是多项式,F(z)(≠0)是整函数,且deg(A0)A
The complex oscillation problem concerning the differential equation f′′+A1(z)eazn f′+A0(z)ebzn f=F(z) has been investigated,where Aj(z)(≠0)(j=0,1)are nonzero polynomials satisfying deg(A0)Adeg(A1)n-1(n≥2),f(Z)(≠0) is an entire function of σ(F) n.It is proved that every nonzero solution f(z)of the above equation satisfies λ(f)=λ(f)=σ(f)=∞,λ2(f)=λ2(f)=σ2(f)=n.