位置:成果数据库 > 期刊 > 期刊详情页
基于局部密度构造相似矩阵的谱聚类算法
  • ISSN号:1000-436X
  • 期刊名称:通信学报
  • 时间:2013.3.3
  • 页码:14-22
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]苏州大学智能信息处理及应用研究所,江苏苏州215006, [2]美国阿肯色中央大学计算机科学系,阿肯色州康威72035-O001
  • 相关基金:国家自然科学基金资助项目(61003054,61170020,61170124)
  • 相关项目:Deep Web敏感聚合信息保护方法研究
中文摘要:

依据样本数据点分布的局部和全局一致性特征,提出了一种基于局部密度构造相似矩阵的谱聚类算法。首先通过分析样本数据点的分布特性给出了局部密度定义,根据样本点的局部密度对样本点集由密到疏排序,并按照设计的连接策略构建无向图;然后以GN算法思想为参考,给出了一种基于边介数的权值矩阵计算方法,经过数据转换得到谱聚类相似矩阵;最后通过第一个极大本征间隙出现的位置来确定类个数,并利用经典聚类方法对特征向量空间中的数据点进行聚类。通过人工仿真数据集和UCI数据集进行测试,实验结果表明本文谱聚类算法具有较好的顽健性。

英文摘要:

According to local and global consistency characteristics of sample data points' distribution, a spectral clustering algorithm using local density-based similarity matrix construction was proposed. Firstly, by analyzing distribution characteristics of sample data points, the definition of local density was given, sorting operation on sample point set from dense to sparse according to sample points' local density was did, and undirected graph in accordance with the designed connection strategy was constructed; then, on the basis of GN algorithm's thinking, a calculation method of weight matrix using edge betweenness was given, and similarity matrix of spectral clustering via data conversion was got; lastly, the class number by appearing position of the first eigengap maximum was determined, and the classification of sample point set in eigenvector space by means of classical clustering method was realized. By means of artificial simulative data set and UCI data set to carry out the experimental tests, results show that the proposed spectral algorithm has better clustering capability.

同期刊论文项目
期刊论文 49 会议论文 8 专利 6
同项目期刊论文
期刊信息
  • 《通信学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国通信学会
  • 主编:杨义先
  • 地址:北京市丰台区成寿寺4路11号邮电出版大厦8层
  • 邮编:100078
  • 邮箱:
  • 电话:010-81055478 81055481
  • 国际标准刊号:ISSN:1000-436X
  • 国内统一刊号:ISSN:11-2102/TN
  • 邮发代号:2-676
  • 获奖情况:
  • 信息产业部通信科技期刊优秀期刊二等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:25019