位置:成果数据库 > 期刊 > 期刊详情页
基于VQMAP模型和AdaBoost学习算法的说话人识别
  • ISSN号:1001-0505
  • 期刊名称:《东南大学学报:自然科学版》
  • 时间:0
  • 分类:TN912.34[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]东南大学信息科学与工程学院,南京210096
  • 相关基金:国家自然科学基金资助项目(60971098)
中文摘要:

为了解决传统说话人识别系统在集成学习后识别速度变慢且容易过学习的问题,构造了一种基于最大后验矢量量化(VQMAP)模型和自适应提升(AdaBoost)学习算法的说话人识别系统.首先,分析了说话人识别系统中基分类器性能对集成分类器泛化误差的影响.然后,针对说话人的类别数,构造适当精度的VQMAP模型.最后,利用包含提前终止策略的AdaBoost学习算法将该模型提升为强分类器.实验结果表明:该算法的识别速度较高,是最大后验高斯混合模型(GMMMAP)的9倍;该算法可有效控制AdaBoost学习算法在说话人识别中的过学习问题,其性能优于VQMAP模型,且在训练数据较少或者类别数可预计的情况下,其性能可接近甚至超过GMMMAP模型.

英文摘要:

In order to solve the problem of low recognition speed and overfitting resulting from ensemble learning in traditional speaker recognition systems,a novel speaker recognition system based on the maximum a posteriori vector quantization model(VQMAP) and the adaptive boosting(AdaBoost) learning algorithm is presented.Firstly,the influence of base classifier performance on the generation errors of the boosted classifier is analyzed in the speaker recognition system.Then,a suitable VQMAP classifier matching the speaker number is constructed.Finally,it is boosted to a strong classifier by the AdaBoost learning algorithm with the early stopping method.The experimental results show that the proposed algorithm has a faster recognition speed,which is 9 times faster than that of maximum a posteriori adapted Gaussian mixture model(GMMMAP).It also reduces the overfitting of the AdaBoost learning algorithm in speaker recognition.The performance of the boosted VQMAP model is better than that of the VQMAP model,and in the case of limited data or a predictable speaker number,it can reach or exceed the GMMMAP model.

同期刊论文项目
期刊论文 24 会议论文 8 专利 1
同项目期刊论文
期刊信息
  • 《东南大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:教育部
  • 主办单位:东南大学
  • 主编:毛善锋
  • 地址:南京四牌楼2号
  • 邮编:210096
  • 邮箱:xuebao@seu.edu.cn
  • 电话:025-83794323
  • 国际标准刊号:ISSN:1001-0505
  • 国内统一刊号:ISSN:32-1178/N
  • 邮发代号:28-15
  • 获奖情况:
  • 先后荣获第三届国家期刊奖百种重点期刊奖,2006-2...,2013年荣获首届江苏省新闻出版政府奖"报刊奖"
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23651