研究了非自治常微分p-Laplacian系统的周期解的存在性。当具有p-线性增长非线性项时,利用临界点理论中的鞍点定理得到了系统周期解存在性的充分条件,所得结果推广了已有结果。
This paper studied the existence of periodic solutions to non-autonomous ordinary differentia/ p- Laplacian systems with p-linear nonlinearity. Some sufficient conditions for the existence of periodic solutions are obtained by using the saddle point theorem in critical point theory, and the results improved the existing ones.