位置:成果数据库 > 期刊 > 期刊详情页
近邻类鉴别分析方法
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]清华大学电子工程系,北京100084
  • 相关基金:国家自然科学基金重点项目(No.60933010)、国家973计划项目(No.2007CB311004)资助
中文摘要:

提出一种近邻类鉴别分析方法,线性鉴别分析是该方法的一个特例.线性鉴别分析通过最大化类间散度同时最小化类内散度寻找最佳投影,其中类间散度是所有类之间散度的总体平均;而近邻类鉴别分析中类间散度定义为各个类与其%个近邻类之间的平均散度.该方法通过选取适当的近邻类数,能够缓解线性鉴别降维后造成的部分类的重叠.实验结果表明近邻类鉴别分析方法性能稳定且优于传统的线性鉴别分析.

英文摘要:

A method of neighbor class linear discriminant analysis (NCLDA) is proposed. Linear discriminant analysis (LDA) is a special case of this method. LDA finds the optimal projections by maximum between-class scatter while by minimum within-class scatter. The between-class scatter is an average over divergences among all classes. In NCLDA, between-class scatter is defined as average divergences between one class and its k nearest neighbor classes. By selecting proper numbers of neighbor class, NCLDA alleviates overlaps among classes caused by LDA. The experimental results show that the proposed NCLDA is robust and outperforms LDA.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169