High brightness γ-rays produced by laser Compton scattering(LCS) are ideal probes for the study of nucleon and nuclear structure. We propose such a γ-ray source using the backscattering of a laser from the bright electron beam produced by the linac of the Shanghai Soft X-ray Free-electron Laser(SXFEL) test facility at the Shanghai Institute of Applied Physics(SINAP). The performance is optimized through theoretical analysis and benchmarked with 4D Monte-Carlo simulations. The peak brightness of the source is expected to be larger than2 × 1022photons/(mm2mrad2s 0.1%BW) and photon energy ranges from 3.7 Me V to 38.9 Me V. Its performance, compared to Extreme Light Infrastructure-Nuclear Physics(ELI-NP), and the Shanghai Laser-Electron Gamma-ray Source(SLEGS), is given. The potential for basic and applied research is also briefly outlined.
High brightness γ-rays produced by laser Compton scattering(LCS) are ideal probes for the study of nucleon and nuclear structure. We propose such a γ-ray source using the backscattering of a laser from the bright electron beam produced by the linac of the Shanghai Soft X-ray Free-electron Laser(SXFEL) test facility at the Shanghai Institute of Applied Physics(SINAP). The performance is optimized through theoretical analysis and benchmarked with 4D Monte-Carlo simulations. The peak brightness of the source is expected to be larger than2 × 1022photons/(mm2mrad2s 0.1%BW) and photon energy ranges from 3.7 Me V to 38.9 Me V. Its performance, compared to Extreme Light Infrastructure-Nuclear Physics(ELI-NP), and the Shanghai Laser-Electron Gamma-ray Source(SLEGS), is given. The potential for basic and applied research is also briefly outlined.