由合成气直接制取低碳混合醇是洁净高效利用煤炭资源的最佳途径之一。通过浸渍法制备了CoCu/SiO2催化剂,采用固定床反应器,排除了内外扩散影响,在反应温度为503-543K,H2与CO的比值为4~0.5条件下,对合成气直接制取低碳混合醇反应进行了本征动力学研究。使用幂函数速率模型对反应结果进行了拟合,计算得出各产物的反应活化能以及对应的H2和CO的反应级数。最后结合碳链增长可能性的变化,讨论了不同温度对CoCu/SiO2催化剂催化合成气直接制备低碳醇反应机理的影响。
Synthesis of lower carbon mixed alcohols directly from syngas is one of the most promising approaches for utilizing coal resources cleanly and efficiently. The intrinsic kinetics for this reaction, in which the effects of internal and external diffusion had been excluded, was studied over CoCu/SiO2 catalysts prepared by the impregnation method in a fixed-bed reactor at 503-543 K with molar ratios of H2/CO varying from 4 to 0.5. The apparent activation energies and the reaction orders with respect to H2 and CO for products were calculated through power law models. With the combination of chain growth probability and kinetics, the effect of temperature on reaction mechanism was discussed.